Standing at the edge of the moon’s shadow, or umbra, the difference between seeing a total eclipse and a partial eclipse comes down to elevation — mountains and valleys both on Earth and on the moon — which affect where the shadow lands. In this visualization, data from NASA’s Lunar Reconnaissance Orbiter account for the moon’s terrain that creates a jagged edge on its shadow. This data is then combined with elevation data on Earth as well as information on the sun angle to create the most accurate map of the eclipse path to date.
You can download maps of your area from NASA’s official eclipse website…I will be studying the Nebraska map closely.
NASA’s Juno spacecraft is currently orbiting around Jupiter and taking some of the best photos and scientific measurements we’ve seen of the solar system’s largest planet. The photo above is of Jupiter’s south pole, gathering point for massive cyclones.
Early science results from NASA’s Juno mission to Jupiter portray the largest planet in our solar system as a complex, gigantic, turbulent world, with Earth-sized polar cyclones, plunging storm systems that travel deep into the heart of the gas giant, and a mammoth, lumpy magnetic field that may indicate it was generated closer to the planet’s surface than previously thought.
“We are excited to share these early discoveries, which help us better understand what makes Jupiter so fascinating,” said Diane Brown, Juno program executive at NASA Headquarters in Washington. “It was a long trip to get to Jupiter, but these first results already demonstrate it was well worth the journey.”
Using data and photos from Juno, Gerald Eichstädt and Seán Doran have created these videos that approximate what it might look like flying by Jupiter in a spacecraft.
Based on the motions of the 2 million stars observed by ESA’s Gaia mission over the past two years, scientists created this simulated animation of how the view of the Milky Way in the night sky will evolve over the next 5 million years.
The shape of the Orion constellation can be spotted towards the right edge of the frame, just below the Galactic Plane, at the beginning of the video. As the sequence proceeds, the familiar shape of this constellation (and others) evolves into a new pattern. Two stellar clusters — groups of stars that were born together and consequently move together — can be seen towards the left edge of the frame: these are the alpha Persei (Per OB3) and Pleiades open clusters.
Stars seem to move with a wide range of velocities in this video, with stars in the Galactic Plane moving quite slow and faster ones appearing over the entire frame. This is a perspective effect: most of the stars we see in the plane are much farther from us, and thus seem to be moving slower than the nearby stars, which are visible across the entire sky.
Well, how’s that for some perspective? (via blastr)
The Orion Nebula is one of the most studied objects in the sky and also has a significant place in the history of astrophotography. In 1880 it was the first ever nebula to be photographed; Henry Draper used the newly invented dry plate process to acquire a 51-minute exposure of the nebula with an 11 inch telescope. Subsequently, in 1883, amateur astronomer Andrew Ainslie Common recorded several exposures up to 60 minutes long with a much larger 36-inch telescope, and showed for the first time that photography could reveal stars and details fainter than those visible to the human eye.
Also called M42 (the 42nd object in a catalog kept by comet hunter Charles Messier in the late 18th century), it is a sprawling star factory, a gas cloud where stars are born. It’s a couple of dozen light-years across, and sits well over a thousand light-years from Earth. That’s 10,000 trillion kilometers, and you can see it with your naked eye! It’s so bright because of a handful of extremely massive hot stars sit in its center. They blast out ultraviolet light that energizes the gas in the nebula, causing it to glow.
It’s actually a small section of a much larger dark cloud, what’s called a molecular cloud, that we cannot see directly. Stars were born near the edge of that cloud, not too deeply inside it, and when they switched on their fierce light and stellar winds blew a hole in the cloud, popping it like a bubble. The Orion Nebula is a cavity in the side of that cloud, carved by the newborn stars.
All but a few humans have seen no more than half of the Moon with their own eyes. For the rest of us stuck on Earth, we only get to see the side that always faces the Earth because the Earth & Moon are tidally locked; the Moon’s rotation about its axis and its orbit around the Earth take the same amount of time. But NASA’s LRO probe has taken high-resolution photos of all but 2% of the Moon’s surface, which have been stitched together into this video of the Moon’s full 360-degree rotation.
Using real images of Mars taken by the HiRISE camera on the Mars Reconnaissance Orbiter, Jan Fröjdman created a 3D-rendered flyover of several areas of the planet’s surface.
In this film I have chosen some locations and processed the images into panning video clips. There is a feeling that you are flying above Mars looking down watching interesting locations on the planet. And there are really great places on Mars! I would love to see images taken by a landscape photographer on Mars, especially from the polar regions. But I’m afraid I won’t see that kind of images during my lifetime.
It has really been time-consuming making these panning clips. In my 3D-process I have manually hand-picked reference points on the anaglyph image pairs. For this film I have chosen more than 33.000 reference points! It took me 3 months of calendar time working with the project every now and then.
Watch this in the highest def you can muster…gorgeous.
Last year, Eleanor Lutz made a medieval-style map of Mars. As a follow-up, she’s made a topographical map of Venus. The features on Venus are named for female mythological figures & notable women and Lutz provides a small biography for each one on the map. Among those featured on the map are:
Anne Frank
Selu (Cherokee Corn Goddess)
Kali (Hindu Goddess, Mother of Death)
Virginia Woolf
Sedna (Eskimo Whose Fingers Became Seals and Whales)
Ubastet (Egyptian Cat Goddess)
Beatrix Potter
Edith Piaf
More than 20 years ago, the Hubble Space Telescope took a photo of a patch of seemingly dark sky and, lo, it was filled with hundreds and hundreds of galaxies.
About ten years after that, they looked even deeper into the night sky and observed thousands of galaxies, each containing hundreds of billions of stars. The video above is an appreciation of these Deep Field images and what they taught us about the Universe.
In 1995, scientists pointed the Hubble Telescope at an area of the sky near the Big Dipper. The location was apparently empty, and the whole endeavour was risky — what, if anything, was going to show up? But what came back was nothing short of spectacular: an image of over 1,500 galaxies glimmering in a tiny sliver of the universe. Alex Hofeldt helps us understand the scale of this image.
The planets orbit a dwarf star named Trappist-1, about 40 light years, or about 235 trillion miles, from Earth. That is quite close, and by happy accident, the orientation of the orbits of the seven planets allows them to be studied in great detail.
One or more of the exoplanets - planets around stars other than the sun - in this new system could be at the right temperature to be awash in oceans of water, astronomers said, based on the distance of the planets from the dwarf star.
“This is the first time so many planets of this kind are found around the same star,” said Michael Gillon, an astronomer at the University of Liege in Belgium and the leader of an international team that has been observing Trappist-1.
In a 45-minute video called Riding Light, Alphonse Swinehart animates the journey outward from the Sun to Jupiter from the perspective of a photon of light. The video underscores just how slow light is in comparison to the vast distances it has to cover, even within our own solar system. Light takes 8.5 minutes to travel from the Sun to the Earth, almost 45 minutes to Jupiter, more than 4 years to the nearest star, 100,000 years to the center of our galaxy, 2.5 million years to the nearest large galaxy (Andromeda), and 32 billion years to reach the most remote galaxy ever observed.1 The music is by Steve Reich (Music for 18 Musicians), whose music can also seem sort of endless.
If you’re impatient, you can watch this 3-minute version, sped up by 15 times:
Using mostly old-school visual effects — like ink dispersing in an aquarium and poking holes in napkins (to represent stars) — Thomas Vanz created a pretty compelling representation of a dying star going supernova.
Novae is a movie about an astronomical event that occurs during the last evolutionary stages of a massive star’s life, whose dramatic and catastrophic death is marked by one final titanic explosion called supernova.
By only using an aquarium, ink and water, this film is also an attempt to represent the giant with the small without any computed generated imagery.
As a tribute to Kubrick or Nolan’s filmography, Novae is a cosmic poem that want to introduce the viewer to the nebulae’s infinite beauty.
Vanz documented his process in these twovideos, which are almost as entertaining as the finished product.
A recent paper claims that the Universe has 10 times more galaxies than we previously thought: an estimated 2 trillion galaxies covering every single patch of sky visible from the Earth. But that doesn’t mean the Universe is more massive or that it contains more stars. Phil Plait explains:
Now, let me be clear. This doesn’t meant the Universe is ten times bigger than we thought, or there are ten times as many stars. I’ll explain — I mean, duh, it’s what I do — but to cut to the chase, what they found is that there are lots of teeny, faint galaxies very far away that have gone undetected. So instead of being in a smaller number of big galaxies, stars are divvied up into a bigger number of smaller ones.
So how many stars are there in the Universe? The Milky Way contains about 400 billion stars. Some massive elliptical galaxies house more than 100 trillion stars. Estimates of the total number are rough, but it’s probably around 10^24 stars…that’s a septillion stars, a trillion trillion. It’s absurd that we’d be the only planet in the Universe with life on it.
The hunt for exoplanets has been heating up in recent years. Since it began its mission in 2009, over four thousand exoplanet candidates have been discovered by the Kepler mission, several hundred of which have been confirmed to be “Earth-like” (i.e. terrestrial). And of these, some 216 planets have been shown to be both terrestrial and located within their parent star’s habitable zone (aka. “Goldilocks zone”).
But in what may prove to be the most exciting find to date, the German weekly Der Spiegel announced recently that astronomers have discovered an Earth-like planet orbiting Proxima Centauri, just 4.25 light-years away. Yes, in what is an apparent trifecta, this newly-discovered exoplanet is Earth-like, orbits within its sun’s habitable zone, and is within our reach. But is this too good to be true?
If you read the article, there’s cause for skepticism but an official announcement is coming next week so we’ll know for sure one way or the other.
In the last decade and a half, rapid technological advances have opened up the possibility of light-powered space travel at a significant fraction of light speed. This involves a ground-based light beamer pushing ultra-light nanocrafts - miniature space probes attached to lightsails - to speeds of up to 100 million miles an hour. Such a system would allow a flyby mission to reach Alpha Centauri in just over 20 years from launch, and beam home images of possible planets, as well as other scientific data such as analysis of magnetic fields.
The planet, called Proxima Centauri b or just Proxima b (exoplanets are given their star’s name plus a lower case letter in order of discovery, starting with “b”), orbits Proxima every 11.2 days. It has a mass of no less than 1.3 times the Earth’s, so if it’s rock and metal like Earth it’s only a bit bigger. It’s a mere 7.3 million kilometers from the star-a lot closer than Earth’s distance from the Sun of 150 million kilometers!-but Proxima is so faint and cool it receives about two-thirds the amount of light and heat the Earth does. That means that it’s in Proxima’s habitable zone: It’s possible (more or less) that liquid water could exist on its surface.
That’s coooool.
Update:Project Blue wants to built a space telescope for the purpose of observing and photographing Earth-like planets around Alpha Centuri.
Project Blue is a consortium of leading space and research organizations on a mission to build and launch a small space telescope to observe planets around our nearest stellar neighbors: Alpha Centauri A and B. The goal is simple: to capture an image, visible to the human eye, of orbiting planets. Seeing a “pale blue dot” could indicate the presence of oceans or an atmosphere — the potential to support life. It would be our first view of another world like our own. With a modest budget and a planned launch by 2020, this goal is tantalizingly close.
When they calculate the total energy of the big flare, it is ten times more powerful than one of the Sun’s bigger flares! That’s a lot of energy. So much, in fact, that the planet, Proxima b, would get good and fried by it. I mean crispy. The planet orbits the star much closer than Earth does the Sun, about 7 million kilometers from Proxima, so the energy from the flare would hit it a lot harder. Assuming these flares happen relatively often (a very safe bet), over the lifetime of the planet these would basically sandblast the planet, ripping the atmosphere right off the planet. They’d strip away any oceans, too, and sterilize whatever was left.
It’s hard to overstate the damage. These flares, over billions of years, are downright apocalyptic. It’s hard to imagine anything being able to survive. The planet may very well be a completely zapped airless lifeless ball of rock.
Every year, the Earth moves through the debris from the Swift-Tuttle comet, resulting in the Perseid meteor shower. This year, the Earth is predicted to move through a particularly dense part of the comet’s wake, which may mean twice the number of shooting stars during this year’s shower. Here’s how to watch:
The best way to see the Perseids is to go outside between midnight and dawn on the morning of Aug. 12. Allow about 45 minutes for your eyes to adjust to the dark. Lie on your back and look straight up. Increased activity may also be seen on Aug. 12-13.
I always find these directions confusing, so to be clear: the best viewing for the Perseids is the night of Aug 11 (Thu) into the morning of Aug 12 (Fri). Good luck!
NASA recently released a time lapse video of the Earth constructed from over 3000 still photographs taken over the course of a year. The photos were taken by a camera mounted on the NOAA’s DSCOVR satellite, which is perched above the Earth at Lagrange point 1.
Wait, have we talked about Lagrange points yet? Lagrange points are positions in space where the gravity of the Sun and the Earth (or between any two large things) cancel each other out. The Sun and the Earth pull equally on objects at these five points.
L1 is about a million miles from Earth directly between the Sun and Earth and anything that is placed there will hover there relative to the Earth forever (course adjustments for complicated reasons aside). It is the perfect spot for a weather satellite with a cool camera to hang out, taking photos of a never-dark Earth. In addition to DSCOVR, at least five other spacecraft have been positioned at L1.
L2 is about a million miles from the Earth directly opposite L1. The Earth always looks dark from there and it’s mostly shielded from solar radiation. Five spacecraft have lived at L2 and several more are planned, including the sequel to the Hubble Space Telescope. Turns out that the shadow of the Earth is a good place to put a telescope.
L3 is opposite the Earth from the Sun, the 6 o’clock to the Earth’s high noon. This point is less stable than the other points because the Earth’s gravitational influence is very small and other bodies (like Venus) periodically pass near enough to yank whatever’s there out, like George Clooney strolling through a country club dining room during date night.
And quoting Wikipedia, “the L4 and L5 points lie at the third corners of the two equilateral triangles in the plane of orbit whose common base is the line between the centers of the [Earth and Sun]”. No spacecraft have ever visited these points, but they are home to some interplanetary dust and asteroid 2010 TK7, which orbits around L4. Cool! (via slate)
While we’re on the subject, NASA announced late last week that they are extending the missions of nine spacecraft sprinkled about the solar system. Included are the New Horizon probe, which will wing off to study an object in the Kuiper Belt after doing so well with Pluto and the rover Opportunity, which was slated for a mission lasting just over 90 days but has now spent more than 12 years exploring the surface of Mars.
The Dawn mission to Ceres is another spacecraft whose duration has been extended, beating long odds. Part of the spacecraft’s functionality had not been working for some time, but was recently repaired.
It was a bit unexpected because Dawn is low on fuel. “Less than a year ago, I would have thought it was ridiculous that the spacecraft would even be operating at this point,” said Marc D. Rayman, the chief engineer for the Dawn mission.
The Dawn spacecraft was designed to use four spinning wheels to pivot in different directions. But at its previous destination, the asteroid Vesta, two of the four wheels overheated and failed. At Ceres, the wheels stayed off, and the spacecraft used its thrusters instead to pivot.
In December, Dawn reached its lowest orbit, just 240 miles above Ceres. Dr. Rayman said he and his team had expected Dawn to exhaust its remaining propellant by March.
But they spun up the wheels again. That succeeded, cutting the use of the thrusters. “It all worked out beautifully,” Dr. Rayman said. That left enough fuel to contemplate doing something more.
The engine burn was tense. 35 minutes is a long time for a spacecraft burn; after 20 minutes it had slowed Juno enough to be in orbit, but not the correct one. It had to continue for another 15 minutes to put the spacecraft on the correct orbit. It worked essentially perfectly. The burn time was off by just one second. That will have no real effect on the orbit.
The 35-minute burn slowed Juno down by more than 1200 mph.
Launched from Earth in August 2011, the Juno probe is due to arrive at Jupiter on July 4, 2016. Once there, it will circle Jupiter 37 times, observing its atmosphere and magnetic fields, before plunging into the giant planet so as not to contaminate Europa with microbes.
Juno’s principal goal is to understand the origin and evolution of Jupiter. Underneath its dense cloud cover, Jupiter safeguards secrets to the fundamental processes and conditions that governed our solar system during its formation. As our primary example of a giant planet, Jupiter can also provide critical knowledge for understanding the planetary systems being discovered around other stars.
With its suite of science instruments, Juno will investigate the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras.
Juno will let us take a giant step forward in our understanding of how giant planets form and the role these titans played in putting together the rest of the solar system.
Gravitational waves from two colliding black holes were first detected last September and announced in February. This week, the same science team announced a second wave detection of two smaller black holes in December.
A black hole’s gravity is so strong that even light can’t escape, so black holes are essentially impossible to see with telescopes. But they do give off gravitational waves.
“Light’s always been how we do astronomy,” Professor Jo Dunkley, an astrophysicist at Oxford University who didn’t work on the experiment, told BuzzFeed News. “Everything we know about space, we’ve got from light. This can show the stuff you can’t see with light.”
Counting black holes, combining telescope with gravitational measurements to better understand neutron stars, all the usual origin-of-the-universe stuff.
If gravitational waves don’t require cataclysmic collisions between enormous black holes for us to measure them, but can be detected on the regular, we can use them to try to figure out a whole lot more than just whether or not Einstein was totally right. That is a very nice tool to have in your pocket.
Tim Doucette is a legally blind astronomer. A pair of surgeries when he was younger to help improve his vision left him with a superpower: because his pupils were permanently dilated, he could see in the dark better than other people. He built an observatory and with the aid of his telescope, he can see details of far-off stars and nebula that no one else can, including UV and infrared light.
A new video from Kurzgesagt explores the limits of human exploration in the Universe. How far can we venture? Are there limits? Turns out the answer is very much “yes”…with the important caveat “using our current understanding of physics”, which may someday provide a loophole (or wormhole, if you will). Chances are, humans will only be able to explore 0.00000000001% of the observable Universe.
This video is particularly interesting and packed with information, even by Kurzgesagt’s standards. The explanation of the Big Bang, inflation, dark matter, and expansion is concise and informative…the idea that the Universe is slowly erasing its own memory is fascinating.
About 13 times per century, the planets align in the heavens and the Earth can watch Mercury crossing the face of the Sun. NASA’s Solar Dynamics Observatory was watching too and captured time lapse videos from several angles using various instruments measuring magnetism, visible light, and UV. The cosmic ballet goes on.
15-year-old Canadian William Gadoury has translated his interest in the Mayan civilization into two remarkable discoveries. Gadoury noticed that the locations of the biggest Mayan cities matched the locations of the stars in Mayan constellations. Furthermore, the star charts pointed to the existence of a previously unknown city, the ruins of which have since been uncovered by satellite photography.
“I did not understand why the Maya built their cities away from rivers, on marginal lands and in the mountains,” said Gadoury. “They had to have another reason, and as they worshiped the stars, the idea came to me to verify my hypothesis. I was really surprised and excited when I realized that the most brilliant stars of the constellations matched the largest Maya cities.”
Someone start a Kickstarter campaign so that he can visit those ruins! (via @delfuego)
Update: Due to a mislabeled file on Wikipedia, I used a photo of an Aztec compass instead of a Mayan image. I have replaced with an image of the Mayan zodiac.
Also, per my post about media coverage of science yesterday, I’ll point out quickly that there’s much to be skeptical about re: this story (see this post from a Mesoamerican archaeologist). More likely than not, there’s a Mayan scholar mailing list going bananas right now…I’ll let you know if I hear anything specific.
The rectangular feature seen on satellite is likely an old corn field (it’s not the right shape to be a pyramid). There are indeed ancient Maya sites all over the place, and satellite imagery and LiDAR are being used to discover them, but this doesn’t seem to be one of those cases…
On the bright side, the “if it sounds too good to be true, it probably is” study has been successfully replicated again. Science rolls on…
Russian billionaire Yuri Milner, with the help of Stephen Hawking and Mark Zuckerburg, plans to launch a fleet of nano-probes1 toward a star close to our solar system, Alpha Centuri. The craft, outfitted with lightsails, will be pushed along to their destination in just 20 years by powerful lasers on Earth.
In the last decade and a half, rapid technological advances have opened up the possibility of light-powered space travel at a significant fraction of light speed. This involves a ground-based light beamer pushing ultra-light nanocrafts - miniature space probes attached to lightsails - to speeds of up to 100 million miles an hour. Such a system would allow a flyby mission to reach Alpha Centauri in just over 20 years from launch, and beam home images of possible planets, as well as other scientific data such as analysis of magnetic fields.
Breakthrough Starshot aims to demonstrate proof of concept for ultra-fast light-driven nanocrafts, and lay the foundations for a first launch to Alpha Centauri within the next generation. Along the way, the project could generate important supplementary benefits to astronomy, including solar system exploration and detection of Earth-crossing asteroids.
The Cassini spacecraft took a photo of two moons of Saturn, Tethys and Enceladus, beautifully aligned with each other. The cosmic ballet goes on. (via slate)
As of last month, 685 multi-planet solar systems (with 1705 planets) have been discovered outside our own. This video shows the relative sizes of those systems compared to ours. Please note:
The size of the orbits are all to scale, but the size of the planets are not. For example, Jupiter is actually 11x larger than Earth, but that scale makes Earth-size planets almost invisible (or Jupiters annoyingly large).
The Cassini probe, launched from Earth in 1997 (six months before I started publishing kottke.org), has been taking photos of Saturn and its moons for 11 years now. The Wall Street Journal has a great feature that shows exactly what the probe has been looking at all that time. (Note: the video above features flashing images, so beware if that sort of thing is harmful to you.)
In a nod to our nation’s recreational drug users, NASA has created this 30-minute ultra high-resolution look at our Sun, assembled from thousands of photographs taken by the Solar Dynamics Observatory, which snaps a 16-megapixel image of the Sun every few seconds. Duuuuuuuude…
Stay Connected