Earlier this year, she began taking semaglutide, also known as Wegovy, after being prescribed the drug for weight loss. (Colloquially, it is often referred to as Ozempic, though that is technically just the brand name for semaglutide that is marketed for diabetes treatment.) Her food thoughts quieted down. She lost weight. But most surprisingly, she walked out of Target one day and realized her cart contained only the four things she came to buy. “I’ve never done that before,” she said. The desire to shop had slipped away. The desire to drink, extinguished once, did not rush in as a replacement either. For the first time โ perhaps the first time in her whole life โ all of her cravings and impulses were gone. It was like a switch had flipped in her brain.
Not everyone experiences these effects, but there’s enough anecdotal evidence at this point that scientists are interested and investigating.
17. Basic research spending matters. The COVID vaccines wouldn’t have been ready for the public nearly as quickly without a number of existing advances in immunology, Anthony Fauci, the former head of the National Institute of Allergy and Infectious Diseases, told us. Scientists had known for years that mRNA had immense potential as a delivery platform for vaccines, but before SARS-CoV-2 appeared, they hadn’t had quite the means or urgency to move the shots to market. And research into vaccines against other viruses, such as RSV and MERS, had already offered hints about the sorts of genetic modifications that might be needed to stabilize the coronavirus’s spike protein into a form that would marshal a strong, lasting immune response.
This short animation from NASA shows the sizes of some of the supermassive black holes that feature at the center of galaxies. Some are relatively small:
First up is 1601+3113, a dwarf galaxy hosting a black hole packed with the mass of 100,000 Suns. The matter is so compressed that even the black hole’s shadow is smaller than our Sun.
While others are much larger than the solar system…and this isn’t even the biggest one:
At the animation’s larger scale lies M87’s black hole, now with a updated mass of 5.4 billion Suns. Its shadow is so big that even a beam of light โ traveling at 670 million mph (1 billion kph) โ would take about two and a half days to cross it.
From Kurzgesagt, this video is a good overview of the arms race going on in all human bodies between cancer cells and the defenses developed by our immune systems over the years.
Somewhere in your body, your immune system just quietly killed one of your own cells, stopping it from becoming cancer, and saving your life. It does that all the time. The vast majority of cancer cells you develop will be killed without you ever noticing. Which is an incredibly hard job because of what cancer cells are: parts of yourself that start to behave as individuals even if it hurts you.
What is cancer and how does your body kill it all the time?
The climate change crisis has become so dire that we’re being forced not only to think of ways to curb emissions and mitigate greenhouse gases, but of ways to adapt to our current situation to buy ourselves more time.
One of those technologies is called solar geoengineering. It happens in nature when huge volcanic eruptions cover the stratosphere with ash: That ash forms a layer that reflects sunlight and cools the planet underneath. Solar geoengineering takes advantage of that principle, using different scientific methods to make the planet more reflective overall. The problem is, deploying it would require messing with our very complicated climate on a massive scale, and many scientists don’t think the risks are worth it.
I saw this video on the front page a YouTube a couple of weeks ago and ignored it. Like, of course water can solve a maze, next! But then it got the Kid Should See This seal of approval so I gave it a shot. It turns out: water can solve a maze…but specifics are super interesting in several respects. Steve Mould, who you may remember from the assassin’s teapot video not too long ago, built four mazes of different sizes and shapes, each of them useful for demonstrating a different wrinkle in how the water moves through a maze. Recommended viewing for all ages.
From Kurzgesagt, an accessible explanation of what happens to the human body when you get sick.
Your brain activates sickness behavior and reorganizes your body’s priorities to defense. The first thing you notice is that your energy level drops and you get sleepy. You feel apathetic, often anxious or down and you lose your appetite. Your sensitivity to pain is heightened and you seek out rest. All of this serves to save your energy and reroute it into your immune response.
They also reveal the best way to boost your immune system to protect yourself against disease. I don’t want to spoil it but it’s vaccines. Vaccines are one of the best things humans have ever invented.
The first few sentences of the abstract for this paper from the scientific journal Renewable Energy contain a twist in the middle that’s worthy of M. Night Shyamalan:
The USA is confronted with three epic-size problems: (1) the need for production of energy on a scale that meets the current and future needs of the nation, (2) the need to confront the climate crisis head-on by only producing renewable, green energy, that is 100% emission-free, and (3) the need to forever forestall the eruption of the Yellowstone Supervolcano. This paper offers both a provable practical, novel solution, and a thought experiment, to simultaneously solve all of the above stated problems.
Yellowstone, it turns out, is a supervolcano. It sits on top of an enormous hot spot, a reservoir of molten rock that rises from at least 125 miles down in the Earth. The heat from the hot spot is what powers all of Yellowstone’s vents, geysers, hot springs, and popping mud pots. Beneath the surface is a magma chamber that is about forty-five miles across โ roughly the same dimensions as the park โ and about eight miles thick at its thickest point. Imagine a pile of TNT about the size of Rhode Island and reaching eight miles into the sky, to about the height of the highest cirrus clouds, and you have some idea of what visitors to Yellowstone are shuffling around on top of. The pressure that such a pool of magma exerts on the crust above has lifted Yellowstone and about three hundred miles of surrounding territory about 1,700 feet higher than they would otherwise be. If it blew, the cataclysm is pretty well beyond imagining. According to Professor Bill McGuire of University College London, “you wouldn’t be able to get within a thousand kilometers of it” while it was erupting. The consequences that followed would be even worse.
Back to the paper. The authors are proposing to generate massive amounts of energy from the supervolcano โ “well over 11 Quadrillion Watt hours of electrical energy” per year:
Through a new copper-based engineering approach on an unprecedented scale, this paper proposes a safe means to draw up the mighty energy reserve of the Yellowstone Supervolcano from within the Earth, to superheat steam for spinning turbines at sufficient speed and on a sufficient scale, in order to power the entire USA. The proposed, single, multi-redundant facility utilizes the star topology in a grid array pattern to accomplish this. Over time, bleed-off of sufficient energy could potentially forestall this Supervolcano from ever erupting again.
I mean, this actually sounds like a great idea if it could be done safely, without ruining the park and, you know, accidentally blowing shit up. As of 2016, Iceland generated 65% of its energy from geothermal sources โ the US could certainly stand to lean more on geothermal.
The assassin’s teapot is certainly an eye-catching name for pottery, but there’s also an interesting bit of physics going on here. The teapot in question has two separate chambers for holding liquid, and the flow out of the pot from each chamber can be controlled by covering or uncovering small holes located on the handle. So, as the legend goes, a would-be assassin could pour themselves a perfectly fine drink from one chamber and then pour a poisoned drink to their prey from the other chamber, just by discreetly covering and uncovering the proper holes with their fingers. As the video explains, the mechanism here has to do with surface tension and air pressure.
You can get your own assassin’s teapot right here.
In the last several months, semaglutide, a drug originally developed to help manage type 2 diabetes, has been in the news for its “breakthrough” weight loss abilities. This video from Vox is a good overview of what the drug does and the interest & controversy around it.
Both Ozempic and Wegovy, Ozempic’s counterpart approved specifically for weight loss by the FDA, are brand names of a drug called semaglutide. Semaglutide is one of several drugs that mimics a crucial digestive hormone called glucagon-like peptide 1, or GLP-1. It amplifies a process our bodies perform naturally.
GLP-1 is released in our intestines when we eat, and there are receptors for the hormone in cells all over the body. In the pancreas, GLP-1 promotes the production of insulin and suppresses the production of glucagon. This helps insulin-resistant bodies, like those with type 2 diabetes or obesity, manage blood sugar levels. In the stomach, GLP-1 slows gastric emptying, extending the feeling of being full. In the brain, GLP-1 suppresses appetite, which also promotes satiety and curbs hunger, so we eat less.
But, as I kept reminding Ozempic-curious friends, these medications were designed for chronic conditions, obesity and diabetes. For people who are dealing with those conditions, Ozempic appears to create a path toward a healthy relationship to food. For those who aren’t, it might function more like an injectable eating disorder. As the side effects make clear, it’s not a casual thing to drastically alter your body’s metabolic process, and there is no large-scale data about the safety of these drugs when taken by people who are mainly interested in treating another chronic condition, the desire to be thin.
I can see my anxiety mirrored in the wave of reactions starting to appear โ op-eds, TV segments, people explaining why it’s good, actually, that the vast majority of those using this drug lose a quarter of their body weight. On social media, fat activists are pointing out that our lives were worthy even without this drug. The wave of opinion will not crest for years.
And that’s fair because this is new โ not just the drug, but the idea of the drug. There’s no API or software to download, but this is nonetheless a technology that will reorder society. I have been the living embodiment of the deadly sin of gluttony, judged as greedy and weak since I was 10 years old-and now the sin is washed away. Baptism by injection. But I have no more virtue than I did a few months ago. I just prefer broccoli to gloopy chicken. Is this who I am?
Even outside the context of drugs, I find the tension between accepting who you are versus trying to change some behavior you find unappealing is challenging to navigate โ it’s something that comes up in therapy a lot. (thx, anil)
Folks, I told you that this was going to become a JWST fan blog and if you didn’t hear me the first time, consider yourself notified. NASA’s newest space telescope is still stretching its legs, but even back in its early days last summer, it captured this breathtaking near-infrared and mid-infrared image of a star preparing to go supernova.
The 10 light-years-wide nebula is made of material cast off from the aging star in random ejections, and from dust produced in the ensuing turbulence. This brilliant stage of mass loss precedes the star’s eventual supernova, when nuclear fusion in its core stops and the pressure of gravity causes it to collapse in on itself and then explode.
Images like these are useful for studying dust, which sounds a little boring but actually is fascinating (italics mine):
The origin of cosmic dust that can survive a supernova blast and contribute to the universe’s overall “dust budget” is of great interest to astronomers for multiple reasons. Dust is integral to the workings of the universe: It shelters forming stars, gathers together to help form planets, and serves as a platform for molecules to form and clump together โ including the building blocks of life on Earth. Despite the many essential roles that dust plays, there is still more dust in the universe than astronomers’ current dust-formation theories can explain. The universe is operating with a dust budget surplus.
Currently imagining a sci-fi office dramedy about the dust budget surplus โ someone over at HBO Max or Apple+ get on this.
If you live in any sort of winter climate, you have, at one time or another, wrestled with the two great mysteries of cold weather life:
1. Why does 50ยฐF in the fall make you want to bundle up while 50ยฐF in the spring makes you want to go for a walk in short sleeves?
2. Why the hell do kids wear shorts during the winter or go without coats when it’s literally freezing out? Like seriously, what the hell?
This short video answers both questions with one magical substance: brown fat.
55 degrees in the summer feels colder than 55 degrees in the winter. And 55 degrees as an adult likely feels colder than 55 degrees as a kid. But it’s not just a feeling. It all has to do with how our bodies use fat - specifically brown fat, a lesser-known type of fat that can produce roughly 300 times more heat than any other tissue in the body.
Brown fat isn’t the type of fat that adds to our weight (that’s white fat). Brown fat has the sole purpose of being burnt for heating the body, and it’s extremely effective at that. It only appears in specific parts of the body: around the neck, spine, heart, and kidneys. (It clumps around major blood vessels, in order to warm the blood as it passes through the body.)
In brief: 1. We have more brown fat in the spring, and 2. Kids have more brown fat in their bodies than adults. Cool! (har har)
Scientists routinely use other kinds of data besides randomized reviews, including lab studies, natural experiments, real-life data and observational studies. All these should be taken into account to evaluate masks.
Lab studies, many of which were done during the pandemic, show that masks, particularly N95 respirators, can block viral particles. Linsey Marr, an aerosol scientist who has long studied airborne viral transmission, told me even cloth masks that fit well and use appropriate materials can help.
Real-life data can be complicated by variables that aren’t controlled for, but it’s worth examining even if studying it isn’t conclusive.
Japan, which emphasized wearing masks and mitigating airborne transmission, had a remarkably low death rate in 2020 even though it did not have any shutdowns and rarely tested and traced widely outside of clusters.
David Lazer, a political scientist at Northeastern University, calculated that before vaccines were available, U.S. states without mask mandates had 30 percent higher Covid death rates than those with mandates.
Randomized trials are difficult to do with masks and are not the only way to scientifically prove something. I’m hoping for an update that the entire premise of that Stephens piece is incorrect and will be removed from the Times’ website, but I don’t think it’s going to happen.
In a 1959 talk entitled There’s Plenty of Room at the Bottom, physicist Richard Feynman casually invented nanotechnology, inviting the audience and then the world to imagine exploring and making use of the “inner space” of the micro and nano realms. In this video from Kurzgesagt, thye imagine how things would seem if you could somehow shrink yourself down to the size of a grain of sand or a molecule or even smaller, sort of a more educational (but still fun) Ant-Man and the Wasp: Quantumania.
You are the size of a grain of sand just 2 mm high, standing on a blade of grass that seems as tall as an eight storey building to you. A square meter of lawn is now a dense metropolitan area, with 100,000 blades, or two Manhattans worth of grass towers. From your new tiny perspective, the park that you could quickly stroll through before, is now the size of France. Crossing it would take at least a week. Human-sized humans loom over you, 4 times taller than the Empire state building, their steps falling from horizon to horizon.
A bee the size of a helicopter lands near you, making the ground shake, as its hairy carapace vibrates with each wingbeat. You try to escape but are barely able to move because the air is so… gooey. Before you clicked the button air resistance was barely noticeable โ but as you’re now a thousand times smaller, it is as if the air has become a thousand times denser. It feels like you are moving through honey.
Flying insects like bees use this to their advantage. Their wings are not made for gliding but like paddles that row through the air. Scaled up to human size, the bee would outrun a Concorde Jet โ except it couldn’t even take off because it would be too heavy for its wings.
I don’t know how kottke.org isn’t going to turn into a JWST-only blog โ it seems like there’s some never-before-seen imagery released every other week that just absolutely knocks my socks off. Like these unprecedented images of nearby galaxies that were taken to help study how individual stars affect galactic structure.
The saying goes, ‘From a tiny acorn grows the mighty oak.’ This is accurate not just here on Earth, but in our solar system and beyond. Even on a galactic scale, where individual stars and star clusters can sculpt a galaxy’s overall structure. Scientists say NASA’s James Webb Space Telescope is perfectly primed to study these phenomena, and the first data is astounding astronomers.
New imagery from Webb’s Mid-Infrared Instrument is revealing never-before-seen details into how young, newly forming stars influence the structure of the gas and dust of nearby galaxies, and therefore how they evolve over time. Areas of galaxies that once appeared dim and dark in visible light, now under Webb’s infrared eye, are glowing cavities and huge cavernous bubbles of gas and dust.
In a potential game changer for the treatment of superbugs, a new class of antibiotics was developed that cured mice infected with bacteria deemed nearly “untreatable” in humans โ and resistance to the drug was virtually undetectable.
Developed by a research team of UC Santa Barbara scientists, the study was published in the journal eBioMedicine. The drug works by disrupting many bacterial functions simultaneously โ which may explain how it killed every pathogen tested and why low-level of bacterial resistance was observed after prolonged drug exposure.
Huge if true, etc. What really caught my attention is how they discovered this in the first place…they were working on a way to charge cell phones:
The discovery was serendipitous. The U.S. Army had a pressing need to charge cell phones while in the field โ essential for soldier survival. Because bacteria are miniature power plants, compounds were designed by Bazan’s group to harness bacterial energy as a “‘microbial”’ battery. Later the idea arose to re-purpose these compounds as potential antibiotics.
“When asked to determine if the chemical compounds could serve as antibiotics, we thought they would be highly toxic to human cells similar to bleach,” said Mahan, the project lead investigator. “Most were toxic โ but one was not โ and it could kill every bacterial pathogen we tested.”
In an article published in the journal Leonardo, the researchers draw upon a fresh look at one of da Vinci’s notebooks to show that the famed polymath had devised experiments to demonstrate that gravity is a form of acceleration โ and that he further modeled the gravitational constant to around 97 percent accuracy.
Da Vinci, who lived from 1452 to 1519, was well ahead of the curve in exploring these concepts. It wasn’t until 1604 that Galileo Galilei would theorize that the distance covered by a falling object was proportional to the square of time elapsed and not until the late 17th century that Sir Isaac Newton would expand on that to develop a law of universal gravitation, describing how objects are attracted to one another. Da Vinci’s primary hurdle was being limited by the tools at his disposal. For example, he lacked a means of precisely measuring time as objects fell.
As the piece notes, Leonardo didn’t get things exactly right:
Da Vinci sought to mathematically describe that acceleration. It is here, according to the study’s authors, that he didn’t quite hit the mark. To explore da Vinci’s process, the team used computer modeling to run his water vase experiment. Doing so yielded da Vinci’s error.
“What we saw is that Leonardo wrestled with this, but he modeled it as the falling object’s distance was proportional to 2 to the t power [with t representing time] instead proportional to t squared,” Roh says. “It’s wrong, but we later found out that he used this sort of wrong equation in the correct way.” In his notes, da Vinci illustrated an object falling for up to four intervals of time-a period through which graphs of both types of equations line up closely.
But it’s still pretty impressive how far he did get. The piece also notes that this work was discovered because the codex was made available online to the general public, demonstrating the value of easy access of materials like this.
A group of astronomers say they have evidence that links supermassive black holes at galactic centers with dark energy, the mysterious force that accounts for roughly 68% of the energy in the universe. Here’s the news release and the paper. From the Guardian:
Instead of dark energy being smeared out across spacetime, as many physicists have assumed, the scientists suggest that it is created and remains inside black holes, which form in the crushing forces of collapsing stars.
“We propose that black holes are the source for dark energy,” said Duncan Farrah, an astronomer at the University of Hawaii. “This dark energy is produced when normal matter is compressed during the death and collapse of large stars.”
The claim was met with raised eyebrows from some independent experts, with one noting that while the idea deserved scrutiny, it was far too early to link black holes and dark energy. “There’s a number of counter-arguments and facts that need to be understood if this claim is going to live more than a few months,” said Vitor Cardoso, a professor of physics at the Niels Bohr Institute in Copenhagen.
And here’s a short video explainer:
It’s a radical claim to be sure โ it’ll be interesting to see how it shakes out in the weeks and months to come as other scientists interpret the results.
DNA and RNA get all of the headlines, but it’s not difficult to argue that much of the glorious complexity and possibility of life is due to proteins. In the latest episode of Kurzgesagt, they explain the role of cellular proteins in creating life.
You are cells. Your muscles, organs, skin and hair. They are in your blood and in your bones.
Cells are biological robots. They don’t want anything, they don’t feel anything. They are never sad or happy. They just are, right here, right now. They are as conscious as a stone or a chair or a neutron star. Cells just follow their programming that has been evolving and changing for billions of years, molded by natural selection.
They are impossible machines and yet, here they are, driven entirely by the fundamental forces of the universe. The smallest unit of life, right at the border where physics becomes biology.
Sometimes, to get a truer understanding of how amazing something is, you need to hold your breath and dive in really deep. So, what are cells and how do they work?
Gathering the data required to cover this much of the night sky was a Herculean task; the DECaPS2 survey identified 3.32 billion objects from over 21,400 individual exposures. Its two-year run, which involved about 260 hours of observations, produced more than 10 terabytes of data.
Most of the stars and dust in the Milky Way are located in its spiral disk โ the bright band stretching across this image. While this profusion of stars and dust makes for beautiful images, it also makes the galactic plane challenging to observe. The dark tendrils of dust seen threading through this image absorb starlight and blot out fainter stars entirely, and the light from diffuse nebulae interferes with any attempts to measure the brightness of individual objects. Another challenge arises from the sheer number of stars, which can overlap in the image and make it difficult to disentangle individual stars from their neighbors.
From Wikipedia contributor Cmglee and Astronomy Picture of the Day, a color-coded periodic table that displays which cosmic events โ the Big Bang, exploding stars, merging neutron stars, etc. โ was responsible for creating each element, according to our present understanding of the universe.
The hydrogen in your body, present in every molecule of water, came from the Big Bang. There are no other appreciable sources of hydrogen in the universe. The carbon in your body was made by nuclear fusion in the interior of stars, as was the oxygen. Much of the iron in your body was made during supernovas of stars that occurred long ago and far away. The gold in your jewelry was likely made from neutron stars during collisions that may have been visible as short-duration gamma-ray bursts or gravitational wave events.
The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff.
Bird flu — known more formally as avian influenza — has long hovered on the horizons of scientists’ fears. This pathogen, especially the H5N1 strain, hasn’t often infected humans, but when it has, 56 percent of those known to have contracted it have died. Its inability to spread easily, if at all, from one person to another has kept it from causing a pandemic.
But things are changing. The virus, which has long caused outbreaks among poultry, is infecting more and more migratory birds, allowing it to spread more widely, even to various mammals, raising the risk that a new variant could spread to and among people.
Alarmingly, it was recently reported that a mutant H5N1 strain was not only infecting minks at a fur farm in Spain but also most likely spreading among them, unprecedented among mammals. Even worse, the mink’s upper respiratory tract is exceptionally well suited to act as a conduit to humans, Thomas Peacock, a virologist who has studied avian influenza, told me.
The three relevant facts here are: 56% of humans who’ve contracted H5N1 have died, there are signs of spreading among mammals, and that particular mammal is “exceptionally well suited” to pass viral infections along to humans. Tufekci, who attempted to sound the alarm relatively early-on about Covid-19, goes on to urge the world to action about H5N1, before it’s too late. Will we act? (No. The answer is no.)
*sigh*
You know, it’s a little shocking to read about a potential solution to the Fermi paradox on a random February Monday, but here we are.
South Korea currently has a probe called Danuri orbiting the Moon at an altitude of about 62 miles above the surface. It’s just begun its mission but has already sent back some black & white photos of the Moon and the Earth, including the two above. Over at EarthSky, Dave Adalian says these shots “rival the work of legendary nature photographer Ansel Adams” and it’s difficult to disagree.
I can’t be the only person who, after watching this, wants to spend a significant amount of money on neodymium magnets and magneticputty? Some people do puzzles, others do Lego โ maybe I could be a magnet guy?
Clive Thompson, himself a person with a number of “weird, offbeat obsessions”, writes about the power of curiosity, including the story of how a trip to Yellowstone’s burbling hot springs led to the PCR method that enables accurate Covid testing.
Back in 1964, the microbiologist Thomas Brock visited Yellowstone National Park to do some sightseeing. He was on a long car ride, and wanted to break up the monotony.
While peering into the hot springs, he noticed a curious blue-green tinge. When he asked a park ranger about it, he was told it was algae. That surprised Brock: Those pools are so hot that some of them reach a boiling temperature. At the time, scientists didn’t know of many lifeforms that could readily thrive such scalding environments.
But Brock couldn’t stop wondering about what exactly was going on in those boiling pools. He was dying to know: What was alive down there? How was it surviving?
Canada’s Bay of Fundy has the highest tides in the world, with a difference between low and high tides reaching more than 50 feet in some areas. That’s a lot of water in motion:
In a single tidal cycle of just over 12 hours, about 110 billion tons of water flows in and out of the Bay of Fundy. That sounds like a lot. To get a handle on just how much it is, it is equivalent to the combined total 24 hr flow of all the rivers of the world!
With that much flowing water, you should be able to generate a massive amount of hydroelectric power. But as Tom Scott explains in this succinct video, the problem is that there’s almost too much energy to harness โ the tide is so strong that it just destroys turbines.
Creative coder Neal Agarwal has launched his newest project: Asteroid Launcher. You can choose the asteroid’s composition (iron, stone, comet, etc.), size, speed, angle of incidence, and place of impact. Then you click “launch” and see the havoc you’ve wrought upon the world, with all kinds of interesting statistics. I bombarded Los Angeles with an iron asteroid a half-mile across moving at 50,000 mph and the results were significant, as you can see from the fireball it created:
Some of the most interesting bits about the impact:
The crater is 2,087 ft deep.
Clothes would catch on fire within 86 miles of the impact.
An estimated 4,343,300 people would die from the 249 decibel shock wave.
Winds would reach 13,373 mph; within 105 miles it would feel like being inside an EF5 tornado.
Crikey! See also the description of the much more massive meteorite that slammed into the Yucatan peninsula 66 million years ago:
The meteorite itself was so massive that it didn’t notice any atmosphere whatsoever,” said Rebolledo. “It was traveling 20 to 40 kilometers per second, 10 kilometers - probably 14 kilometers โ wide, pushing the atmosphere and building such incredible pressure that the ocean in front of it just went away.
The sound made by the Krakatoa volcanic eruption in 1883 was so loud it ruptured eardrums of people 40 miles away, travelled around the world four times, and was clearly heard 3,000 miles away.
From Maastricht University in The Netherlands, this is a fantastic animation of the lifecycle of the SARS-CoV-2 virus as it invades and then multiplies in the human lung. A more scientific version is available as well. Great explanation but I love the visual style of this. They used textures similar to stop motion animations โ e.g. the proteins look like clay and the cell membranes seem to be made of felt. (via carl zimmer)
It is Friday and this is the perfect Friday sort of post. BeamNG is a video game of sorts that’s “a dynamic soft-body physics vehicle simulator capable of doing just about anything”. In the simulator, you can quickly devise all sorts of situations with a variety of cars and then press play to see what happens, with (mostly) realistic physics and collisions. For instance, here’s Cars vs Big Bulge:
Chained Cars vs Bollards:
Cars vs 100 Fallen Trees:
Trains vs Giant Pit:
And many many more. My god if this simulator had been around when I was 12 years old, I might not have done anything else. Hell, if I downloaded and installed this right now, I might not ever get anything done ever again. (via @tvaziri)
Stay Connected