Chang’e-4 and Yutu-2 are now past their prime mission and are in their extended mission phases. Their companion SmallSat, Longjiang-2, will crash into the Moon on 31 July to bring its mission to an intentional end. Parker Solar Probe is near aphelion as of 1 July and will reach its third death-defying solar perihelion on 1 September. BepiColombo completed its near-Earth commissioning phase on 5 April and is now settling into its long-cruise phase. Earlier this year, the ESA-JAXA Mercury mission was racing ahead of Earth on an inside track, but its elliptical orbit has now taken it farther from the Sun than Earth, allowing Earth to catch up. It will return to Earth’s neighborhood in April 2020 for a flyby.
I counted roughly 30 different probes and rovers in operation, most of them gathered around the Moon and Mars. Sure, where’s my jetpack and flying car and all that, but the fact that humanity has more than two dozen robots currently exploring the solar system seems pretty futuristic to me.
Emily Lakdawalla provides an update on all of the exploration that’s going on in our solar system this month. Here’s a quick map view of the 20+ spacecraft exploring our solar system beyond Earth:
Mars remains the most active spot beyond Earth in the solar system. This week, Mars Reconnaissance Orbiter reaches its 10th anniversary of service in space, but it’s far from the oldest spacecraft in orbit at Mars; Mars Express and Mars Odyssey are still at work up there. Mars Orbiter Mission has ventured into an extended mission and is still returning photos, though apparently none of the full-disk images in a variety of phases that I had hoped for from its 4-Megapixel color camera. Even Mars’ newest resident, MAVEN, is three-quarters of the way through its one-year primary science mission, which began on November 16, 2014. MAVEN’s mission will undoubtedly be extended long beyond that, as it will be needed to support surface missions if and when Odyssey and Mars Reconnaissance Orbiter eventually fail.
Both Opportunity and Curiosity have been very active lately. Opportunity has finally reached Marathon Valley, a site identified from orbit to have signs of clay chemistry. The team is excited about the science prospects even though the rover’s memory problems persist.
As the New Horizons probe nears Pluto, I’ve been reading a bit more about how it’s going to work and what sort of photos we’re going to get. Emily Lakdawalla has a comprehensive post about what to expect when you’re expecting a flyby of Pluto. The post contains an image of approximations of the photos New Horizon will take, using Voyager images of Jovian and Saturnian moons as stand-ins. The highest resolution photo of Pluto will be 0.4 km/pixel…it’ll have this approximate level of detail:
Which is pretty amazing and exciting considering that before the mission started this was our best view of Pluto:
NASA’s Eyes app lets you see a simulation of the probe as it approaches Pluto, but if you don’t want to download anything, you can watch this video of the flyby instead:
I had no idea the probe spun around so much as it grabs photos & scans and then beams them back to Earth. And the flyby is so fast! New Horizons is currently moving at 32,500 mph relative to the Sun…it’s travelling just over 9 miles every second. (via @Tim_Meyer_ & @badastronomer)
Stay Connected