Advertise here with Carbon Ads

This site is made possible by member support. ❤️

Big thanks to Arcustech for hosting the site and offering amazing tech support.

When you buy through links on kottke.org, I may earn an affiliate commission. Thanks for supporting the site!

kottke.org. home of fine hypertext products since 1998.

🍔  💀  📸  😭  🕳️  🤠  🎬  🥔

The new hotness: using gravity waves to map the universe

Light (aka electromagnetic radiation) is responsible for most of what we know about the universe. By measuring photons of various frequencies in different ways — “the careful collection of ancient light” — we’ve painted a picture of our endless living space. But light isn’t perfect. It can bend, scatter, and be blocked. Changes in gravity are more difficult to detect, but new instruments may allow scientists to construct a different map of the universe and its beginnings.

LIGO works by shooting laser beams down two perpendicular arms and measuring the difference in length between them-a strategy known as laser interferometry. If a sufficiently large gravitational wave comes by, it will change the relative length of the arms, pushing and pulling them back and forth. In essence, LIGO is a celestial earpiece, a giant microphone that listens for the faint symphony of the hidden cosmos.

Like many exotic physical phenomena, gravitational waves originated as theoretical concepts, the products of equations, not sensory experience. Albert Einstein was the first to realize that his general theory of relativity predicted the existence of gravitational waves. He understood that some objects are so massive and so fast moving that they wrench the fabric of spacetime itself, sending tiny swells across it.

How tiny? So tiny that Einstein thought they would never be observed. But in 1974 two astronomers, Russell Hulse and Joseph Taylor, inferred their existence with an ingenious experiment, a close study of an astronomical object called a binary pulsar [see “Gravitational Waves from an Orbiting Pulsar,” by J. M. Weisberg et al.; Scientific American, October 1981]. Pulsars are the spinning, flashing cores of long-exploded stars. They spin and flash with astonishing regularity, a quality that endears them to astronomers, who use them as cosmic clocks. In a binary pulsar system, a pulsar and another object (in this case, an ultradense neutron star) orbit each other. Hulse and Taylor realized that if Einstein had relativity right, the spiraling pair would produce gravitational waves that would drain orbital energy from the system, tightening the orbit and speeding it up. The two astronomers plotted out the pulsar’s probable path and then watched it for years to see if the tightening orbit showed up in the data. The tightening not only showed up, it matched Hulse and Taylor’s predictions perfectly, falling so cleanly on the graph and vindicating Einstein so utterly that in 1993 the two were awarded the Nobel Prize in Physics.