Advertise here with Carbon Ads

This site is made possible by member support. ๐Ÿ’ž

Big thanks to Arcustech for hosting the site and offering amazing tech support.

When you buy through links on kottke.org, I may earn an affiliate commission. Thanks for supporting the site!

kottke.org. home of fine hypertext products since 1998.

๐Ÿ”  ๐Ÿ’€  ๐Ÿ“ธ  ๐Ÿ˜ญ  ๐Ÿ•ณ๏ธ  ๐Ÿค   ๐ŸŽฌ  ๐Ÿฅ”

Body of Theseus

How old are different parts of our bodies? Does anything stick around the entire time? The hair on our bodies lasts only a few years. Fingernails are fully replaced every six months. Your skin lasts 2-4 weeks. Even your blood and bones regenerate every so often. There’s at least one part of your body with lasts the whole time you’re alive, which I found somewhat surprising. See the ship of Theseus paradox.

The ship wherein Theseus and the youth of Athens returned from Crete had thirty oars, and was preserved by the Athenians down even to the time of Demetrius Phalereus, for they took away the old planks as they decayed, putting in new and stronger timber in their places, in so much that this ship became a standing example among the philosophers, for the logical question of things that grow; one side holding that the ship remained the same, and the other contending that it was not the same.

How do we know the lifespans of different cells in the body? Carbon-14 levels from nuclear testing done in the 50s and 60s.

Analysis of growth rings from pine trees in Sweden shows that the proliferation of atomic tests in the 1950s and 1960s led to an explosion in levels of atmospheric carbon 14. Now, Jonas Frisen and colleagues at the Karolinska Institute in Stockholm have taken advantage of this spike in C14 to devise a method to date the birth of human cells. Because this test can be used retrospectively, unlike many of the current methods used to detect cell proliferation, and because it does not require the ingestion of a radioactive or chemical tracer, the method can be readily applied to both in vivo and postmortem samples of human tissues.